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APPROXIMATE CALCULATION OF PURE BENDING

OF A SYMMETRIC BEAM UNDER IRREVERSIBLE STRAIN

UDC 539.4+539.376I. D. Klopotov and S. Yu. Nizovskikh

The method of characteristic parameters is extended to the case of creep bending of a beam whose
cross section has one symmetry axis. The method proposed is very time consuming and based on
simple mathematical apparatus. The problem reduces to solving simple nonlinear algebraic equations.

In aircraft and ship building, the basic parts are produced by forming processes involving slow deformation,
in which the irreversible strains are considerably contributed by creep strains [1]. In this case, lower forming loads
are required and the accuracy in manufacturing parts increases. One of the main technological problems is to
determine the shape of a member after the load is removed. Direct calculations are very involved because of the
complex geometry of the members and the nonlinearity of the equations.

The calculations are simplified using the method of so-called characteristic parameters [2, 3]. The essence of
the method is the following. It is assumed that in a loaded structural member there is a certain characteristic point
(neighborhood), whose position depends only slightly on the load, strain rate, and temperature under specified
boundary conditions. For a constant load, the stresses at this point remain unchanged and equal to the elastic
stresses up to the moment the member fails. If the external load is varied, the stresses at the characteristic point
vary by the law of uniaxial elastic deformation and the strains at this point determine the behavior of the entire
structure. After the load is removed, the stresses at this point vanish. The coordinate of the characteristic point
is determined as the point at which elastic and steady stress diagrams intersect. In [2, 3], the coordinates of the
characteristic point were found and used to analyze the creep bending of a rectangular beam. In the present paper,
the method is extended to a beam whose cross section possesses one symmetry axis (for example, T-shaped cross
sections with one or more steps).

We consider a beam loaded by a bending moment M which is constant along the beam. It is assumed that
the beam obeys the Kirchhoff hypothesis of direct normals:

σ/E + εc = χ(z − δ).

Here z is the coordinate reckoned along the height of the beam (z = 0 at the base of the beam), σ is the stress at
the point z, E is Young’s modulus, εc is the creep strain, χ is the beam curvature, and δ is the coordinate of the
neutral plane (total strain vanishes in this plane).

We write the equilibrium equations∫
S

σ dS = 0,
∫
S

σz dS = M, (1)

where S is the cross-sectional area of the beam.
At the initial moment t = 0, we have εc = 0. Therefore,

σ = Eχ(z − δ0), (2)

where δ0 is the initial position of the neutral plane.
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From the first equation in (1), we obtain

δ0 =
1
S

H∫
0

b(z)z dz, (3)

where H is the height of the beam and b(z) is its width at the point z.
We use the creep law

ε̇c = Bσ|σ|n−1, (4)

where B and n are material’s constants.
Thus, the steady-stress distribution in the beam is given by

σ = (χ̇/B)1/n(z − δ)1/n. (5)

At the characteristic point z = ẑ, the stresses defined by (2) and (5) are equal. Hence,

σ̂ = Eχ(ẑ − δ0) = (χ̇/B)1/n(ẑ − δ)1/n = (M/J)(ẑ − δ0), (6)

where J =

H∫
0

b(z − δ0)z dz is the elastic moment of inertia of the beam.

Using the first equation of (1), we obtain the following equation for the steady location of the neutral plane δ
H∫

0

b(z)(z − δ)1/n dz = 0. (7)

Since the beam moment is constant, the second equilibrium equation in (1) and relation (6) can be combined to
give

(ẑ − δ)1/n =

H∫
0

b(z)(z − δ)1/nz dz

( H∫
0

b(z)z2 dz − Sδ2
0

)−1

(ẑ − δ0). (8)

Solving the nonlinear equations (7) and (8) with allowance for (3), we determine the coordinate of the
characteristic point ẑ, which depends only on the creep exponent n and the geometrical dimensions of the beam.
Given the bending moment and the rate of change in beam curvature, one can determine the stress σ̂ at the point ẑ.

Let us consider a beam of multistep cross section which is symmetrical about the vertical axis (Fig. 1). Using
(3), (7), and (8), we obtain

δ0 =
m∑
k=1

bk(h2
k − h2

k−1)
(

2
m∑
k=1

bkhk

)−1

,
m∑
k=1

bk

(
(hk − δ)(n+1)/n − (hk−1 − δ)(n+1)/n

)
= 0,
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(ẑ − δ)1/n =
n

n+ 1

m∑
k=1

bk

[
hk(hk − δ)(n+1)/n − hk−1(hk−1 − δ)(n+1)/n

− n

2n+ 1
((hk − δ)(2n+1)/n − (hk−1 − δ)(2n+1)/n)

]
×

[
1
3

m∑
k=1

bk(h3
k − h3

k−1)−
( m∑
k=1

bk(h2
k − h2

k−1)
)2(

4
m∑
k=1

bkhk

)−1
]−1

(ẑ − δ0).

Here h0 = 0, bk and hk are the width and height of the kth step, respectively, and m is the number of steps.
The beam is bent by a constant moment M . The creep law is taken in the form (4). We assume that plastic

strains are absent. Hence, at the initial moment t = 0, the curvature of the beam is given by χ0 = M/(EJ). For
t = t1, the total curvature of the beam is written as χ1 = χ0 + ∆χ.

If the bending moment increases slowly, the stress at the characteristic point of the beam remains unchanged.
For t 6 t1, we have

σ̂0/E + ε̂c = χ(ẑ − δ). (9)
Differentiating (9) with respect to time, we obtain

Bσ̂n0 = χ̇(ẑ − δ) = (∆χ/t1)(ẑ − δ).
Hence, σ̂0 = (∆χ(ẑ − δ)/(Bt1))1/n and χ0 = σ̂0/(E(ẑ − δ0)) = (E(ẑ − δ0))−1(∆χ(ẑ − δ)/(Bt1))1/n.

At the moment t1, the displacements of the beam are fixed and the stresses and bending moment begin to
relax:

˙̂σ/E +Bσ̂n = 0, t = t1, σ̂ = σ0. (10)
Solution of (10) yields σ̂(t) = σ̂0[1 + (n− 1)EBσ̂n−1

0 (t− t1)]−1/(n−1). For t = t2, we obtain σ̂(t2) =
σ̂0[1 + (n− 1)EBσ̂n−1

0 (t2 − t1)]−1/(n−1).
After the load is removed, the beam curvature decreases by the value of elastic unloading χunload =

σ̂(t2)/(E(ẑ − δ0)). As a result, it should be equal to the specified curvature of the member χmember. From this it
follows that

χ1 = χmember + χunload = χ0 + ∆χ. (11)
Substituting χ0 and χunload expressed in terms of ∆χ into (11), we obtain

∆χ = χmember −
1

E(ẑ − δ0)

(∆χ
Bt1

(ẑ − δ)
)1/n[

1−
(

1 + (n− 1)EB
(∆χ1

Bt1
(ẑ − δ)

)(n−1)/n

(t2 − t1)
)−1/(n−1)]

.

Solving this nonlinear equation, we obtain the quantity ∆χ, which determines all parameters of the process. Thus,
given the creep characteristics of the material, geometry of the beam, and the duration of the process, one can
calculate the desired residual curvature of the beam. In this case, the problem is reduced to solution of nonlinear
algebraic equations. Plastic strains can easily be taken into account.

Figure 2 shows calculated curves of χ1(χmember) (the solid curve refers to a direct numerical solution and
the dashed curve to a simplified calculation using the characteristic point). The calculations were performed for a
beam made of AK4-1T alloy for t1 = 1 h, t2 = 2 h, T = 200◦C, and E = 60 GPa. The beam had a T-shaped cross
section and dimensions b1 = 1080 mm, b2 = 7.5 mm, h1 = 2 mm, and h2 = 23 mm. The creep constants were as
follows: n = 7 and B = 3.7152 · 10−20 MPa−n· sec−1.

Good agreement between the direct numerical solution and the approximate solution shows that the method
proposed above can be used to analyze the creep bending of beams with one symmetry axis.
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